

Panel Discussion: Probing New Physics with Double Beta Decays beyond the Tonne Scale

Lukas Graf

lukas.graf@mpi-hd.mpg.de

Max Planck Institute for Nuclear Physics, Heidelberg

Probing New Physics with ββ

- Majorana masses ↔ LNV ↔ neutrinoless double beta decay (0νββ)
- UV physics which mechanism?
 - LG, M. Lindner, O. Scholer: *Distinguishing among 0vbb Mechanisms*, in preparation
- Interplay of different contributions non-trivial, complex formulae
 - J. de Vries, LG, O. Scholer: Ovbb Automation Tool, in preparation
- searches for 0νββ decay → large amount of 2νββ background decay data collected ~ 10⁵ - 10⁶ events
- New Physics in 2vββ decay?
 - right-handed currents → F. F. Deppisch, LG, F. Simkovic: 2003.11836, PRL 125
 - ν self-interactions → F. F. Deppisch, LG, W. Rodejohann, X. Xu: 2004.11919, PRD 102
 - sterile neutrinos → P. D. Bolton, F. F. Deppisch, LG, F. Simkovic: 2011.13387

Non-Standard 0νββ

- effectively, a variety of different mechanisms beyond the standard scenario may contribute to $0\nu\beta\beta$ (1208.0727, 1708.09390, 1806.02780, 1806.06058, 2009.10119)
- more descriptions: epsilon basis vs. Wilson coefficients

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left[C_{\text{VL}}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) + C_{\text{VR}}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) \right. \\ \left. + C_{\text{SL}}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) + C_{\text{SR}}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right) \right. \\ \left. + C_{\text{T}}^{(6)} \left(\overline{u_L} \sigma^{\mu\nu} d_R \right) \left(\overline{e_L} \sigma_{\mu\nu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left[C_{\text{VL}}^{(7)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_L} \overset{\leftrightarrow}{\partial}_{\mu} \nu_L^c \right) + C_{\text{VR}}^{(7)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_L} \overset{\leftrightarrow}{\partial}_{\mu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i,R}^{(9)} \left(\overline{e_R} e_R^c \right) + C_{i,L}^{(9)} \left(\overline{e_L} e_L^c \right) \right) \mathcal{O}_i + C_i^{(9)} \left(\overline{e} \gamma_{\mu} \gamma_5 e^c \right) \mathcal{O}_i^{\mu} \right]$$

Distinguishing 0νββ Mechanisms

- phase-space observables electron energy spectra, angular correlation
- comparison with other $\beta\beta$ modes $\rightarrow \beta + \beta +$, EC β +, ECEC typically suppressed
- $\bullet \quad \text{decay rate ratios for different isotopes } \\ R^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X}) \equiv \frac{T_{1/2}^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X})}{T_{1/2}^{\mathcal{O}_i}(^{76}\mathrm{Ge})} = \frac{|\mathcal{M}^{\mathcal{O}_i}(^{76}\mathrm{Ge})|^2 G^{\mathcal{O}_i}(^{76}\mathrm{Ge})}{|\mathcal{M}^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X})|^2 G^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X})}$
 - → ratio of half-lives = ratio of NMEs x ratio of PSFs, the unknown coupling drops out
 - distinguishing 2 specific operators quantified using $R_{ij}(^{A}X) = \frac{R^{\mathcal{O}_{i}}(^{A}X)}{R^{\mathcal{O}_{j}}(^{A}X)}$
- applied to the "master formula" framework of 1806.02780 V. Ciriigliano,
 W. Dekens, J. de Vries, M.L. Graesser, E. Mereghetti: A neutrinoless double beta decay master formula from effective field theory, JHEP 12
 - PSFs → 4 distinguishable groups of operators
 - ratios: in principle 12 distinguishable groups of operators
 - main issue: unknown low energy constants (LECs) → large uncertainties
 → LQCD computations vital

Distinguishing 0νββ Mechanisms - PSFs

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left[C_{\text{VL}}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) \right. \\ + C_{\text{VR}}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) \\ + C_{\text{SL}}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) \\ + C_{\text{SR}}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right) \\ + C_{\text{SR}}^{(6)} \left(\overline{u_L} \sigma^{\mu\nu} d_R \right) \left(\overline{e_L} \sigma_{\mu\nu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left[C_{\text{VL}}^{(7)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_L} \stackrel{\leftrightarrow}{\partial}_{\mu} \nu_L^c \right) \right. \\ + C_{\text{VR}}^{(7)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_L} \stackrel{\leftrightarrow}{\partial}_{\mu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i,R}^{(9)} \left(\overline{e_R} e_R^c \right) + C_{i,L}^{(9)} \left(\overline{e_L} e_L^c \right) \right) \mathcal{O}_i \right. \\ + C_i^{(9)} \left(\overline{e} \gamma_{\mu} \gamma_5 e^c \right) \mathcal{O}_i^{\mu} \right]$$

Distinguishing 0νββ Mechanisms - Ratios

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left[C_{\text{VL}}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) + C_{\text{VR}}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) \right. \\
+ C_{\text{SL}}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) + C_{\text{SR}}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right) \right. \\
+ C_{\text{SL}}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) + C_{\text{SR}}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right) \right. \\
+ C_{\text{T}}^{(6)} \left(\overline{u_L} \sigma^{\mu\nu} d_R \right) \left(\overline{e_L} \sigma_{\mu\nu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left[C_{\text{VL}}^{(7)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_L} \overset{\leftrightarrow}{\partial}_{\mu} \nu_L^c \right) + C_{\text{VR}}^{(7)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_L} \overset{\leftrightarrow}{\partial}_{\mu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i,R}^{(9)} \left(\overline{e_R} e_R^c \right) + C_{i,L}^{(9)} \left(\overline{e_L} e_L^c \right) \right) \mathcal{O}_i + C_i^{(9)} \left(\overline{e_T} \gamma_{\mu} \gamma_5 e^c \right) \mathcal{O}_i^{\mu} \right] \right]$$

Distinguishing 0νββ Mechanisms - Ratios

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left[C_{\text{VL}}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) + C_{\text{VR}}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) \right. \\
+ C_{\text{SL}}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) + C_{\text{SR}}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right) \\
+ C_{\text{SL}}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) + C_{\text{SR}}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right) \right. \\
+ C_{\text{T}}^{(6)} \left(\overline{u_L} \sigma^{\mu\nu} d_R \right) \left(\overline{e_L} \sigma_{\mu\nu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left[C_{\text{VL}}^{(7)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_L} \overrightarrow{\partial}_{\mu} \nu_L^c \right) + C_{\text{VR}}^{(7)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_L} \overrightarrow{\partial}_{\mu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i,R}^{(9)} \left(\overline{e_R} e_R^c \right) + C_{i,L}^{(9)} \left(\overline{e_L} e_L^c \right) \right) \mathcal{O}_i + C_i^{(9)} \left(\overline{e_T} \gamma_{\mu} \gamma_5 e^c \right) \mathcal{O}_i^{\mu} \right] \right]$$

Distinguishing 0νββ Mechanisms - Ratios

m_{etaeta}	$C_{VL}^{(6)}$	$C_{VR}^{(6)}$	$C_{T}^{(6)}$	C _{6,7}	$C_{S1}^{(9)}$	$C_{52}^{(9)}$	$C_{53}^{(9)}$	$C_{54}^{(9)}$	$C_{55}^{(9)}$	$C_{V}^{(9)}$	
-	¹⁹⁸ Pt ⁸² Se	¹⁵⁰ Nd ²³² Th	¹⁹⁸ Pt ⁸² Se	⁷⁶ Ge ⁹⁶ Zr	¹⁹⁸ Pt ⁸² Se	⁸² Se ⁹⁶ Zr	⁸² Se ⁹⁶ Zr	⁸² Se ⁹⁶ Zr	⁸² Se ⁹⁶ Zr	¹⁹⁸ Pt ⁸² Se	-4.0
- ⁸² Se - ¹⁹⁸ Pt		⁸² Se ²³² Th	⁸² Se ²³² Th	⁷⁶ Ge ²³² Th	¹⁰⁰ Mo ⁷⁶ Ge	⁸² Se ¹⁵⁰ Nd	⁸² Se ¹⁵⁰ Nd	⁸² Se ¹⁵⁰ Nd	⁸² Se ¹⁵⁰ Nd	¹⁹⁸ Pt ⁸² Se	-3.5
¹³⁴ Xe ¹⁹⁸ Pt	²³² Th ⁸² Se		²³² Th ⁸² Se	¹³⁴ Xe ⁹⁶ Zr	²³² Th ⁸² Se	¹³⁴ Xe ⁹⁶ Zr	¹³⁴ Xe ⁹⁶ Zr	¹³⁴ Xe ⁹⁶ Zr	¹³⁴ Xe ⁹⁶ Zr	²³² Th ⁸² Se	
⁷⁶ Ge ¹⁹⁸ Pt	²³² Th ⁸² Se	⁸² Se ²³² Th		⁷⁶ Ge ¹¹⁰ Pd	¹⁹⁸ Pt ⁸² Se	⁸² Se ¹⁵⁰ Nd	⁸² Se ¹⁵⁰ Nd	⁸² Se ¹⁵⁰ Nd	⁸² Se ¹⁵⁰ Nd	²³² Th ⁸² Se	-3.0
96 7	²³² Th ⁷⁶ Ge	⁹⁶ Zr ¹³⁴ Xe	¹¹⁰ Pd ⁷⁶ Ge		¹¹⁰ Pd ⁷⁶ Ge	$\frac{^{124}Sn}{^{150}Nd}$	¹²⁴ Sn ¹⁵⁰ Nd	$\frac{^{124}Sn}{^{150}Nd}$	¹²⁴ Sn ¹⁵⁰ Nd	²³² Th ⁸² Se	-2.5
$\frac{3927}{198Pt}$ $\frac{82Se}{198Pt}$	¹⁵⁰ Nd ¹¹⁶ Cd	⁸² Se ²³² Th	⁸² Se ¹⁹⁸ Pt	⁷⁶ Ge ¹¹⁰ Pd		⁸² Se ⁹⁶ Zr	⁸² Se ⁹⁶ Zr	⁸² Se ⁹⁶ Zr	⁸² Se ⁹⁶ Zr	²³² Th ⁸² Se	-2.0
$\frac{96Zr}{198Pt}$	¹⁵⁰ Nd ⁸² Se	¹⁵⁰ Nd ²³² Th	$\frac{^{150}Nd}{^{124}Sn}$	⁷⁶ Ge ¹⁶⁰ Gd	⁹⁶ Zr ⁸² Se		¹⁹⁸ Pt ¹³⁶ Xe	¹²⁸ Te ¹⁵⁴ Sm	⁸² Se ⁷⁶ Ge	¹¹⁰ Pd ⁸² Se	7.5
$\frac{96Zr}{198Pt}$	¹⁵⁰ Nd ⁸² Se	¹⁵⁰ Nd ²³² Th	$\frac{^{150}Nd}{^{130}Te}$	⁷⁶ Ge ¹⁶⁰ Gd	⁹⁶ Zr ⁸² Se	⁷⁶ Ge ⁹⁶ Zr		$\frac{^{160}Gd}{^{96}Zr}$	¹³⁶ Xe ¹²⁸ Te	¹¹⁰ Pd ⁸² Se	-1.5
$= \frac{^{96}Zr}{^{198}Pt}$	¹⁵⁰ Nd ⁸² Se	¹⁵⁰ Nd ²³² Th	$\frac{^{150}Nd}{^{124}Sn}$	⁷⁶ Ge ¹⁶⁰ Gd	⁹⁶ Zr ⁸² Se	⁷⁶ Ge ⁹⁶ Zr	⁹⁶ Zr ⁷⁶ Ge		$\frac{^{116}Cd}{^{128}Te}$	¹¹⁰ Pd ⁸² Se	A 1.0
$3 - \frac{96Zr}{198Pt}$	¹⁵⁰ Nd ⁸² Se	¹⁵⁰ Nd ¹³⁴ Xe	$\frac{^{150}Nd}{^{82}Se}$	⁷⁶ Ge ¹⁶⁰ Gd	⁹⁶ Zr ⁸² Se	⁹⁶ Zr ⁷⁶ Ge	⁹⁶ Zr ⁷⁶ Ge	⁹⁶ Zr ⁷⁶ Ge		82Se 110Pd 82S	-0.5
¹⁵⁰ Nd ¹⁹⁸ Pt	¹⁵⁰ Nd ⁸² Se	¹⁵⁰ Nd ²³² Th	¹⁵⁰ Nd ⁸² Se	¹⁵⁰ Nd ¹¹⁰ Pd	¹⁴⁸ Nd ⁸² Se	¹⁴⁸ Nd ¹¹⁰ Pd	¹⁴⁸ Nd ⁸² Se	¹⁴⁸ Nd ¹¹⁰ Pd	148 <i>Nd</i> 110 <i>Pc</i>		-0.0

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left[C_{\text{VL}}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) + C_{\text{VR}}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) \right. \\
+ C_{\text{SL}}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) + C_{\text{SR}}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right) \\
+ C_{\text{T}}^{(6)} \left(\overline{u_L} \sigma^{\mu\nu} d_R \right) \left(\overline{e_L} \sigma_{\mu\nu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left[C_{\text{VL}}^{(7)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_L} \overrightarrow{\partial}_{\mu} \nu_L^c \right) + C_{\text{VR}}^{(7)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_L} \overrightarrow{\partial}_{\mu} \nu_L^c \right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i,R}^{(9)} \left(\overline{e_R} e_R^c \right) + C_{i,L}^{(9)} \left(\overline{e_L} e_L^c \right) \right) \mathcal{O}_i + C_i^{(9)} \left(\overline{e_T} \gamma_{\mu} \gamma_5 e^c \right) \mathcal{O}_i^{\mu} \right] \right]$$

0νββ Automation Tool

• user inputs:

- scale + selection of operators
- isotope(s), type of NMEs

data inputs:

- nuclear matrix elements
- phase-space factors
- low-energy constants (and nuclear form factors)

• outputs:

- half-life formula for the given case
- limits on selected couplings
- chosen contour plots showing correlations of different parameters
- $m_{\beta\beta}$ vs. m_{ν} plots, etc.

Exotic 2νββ – RHCs

2νββ decay in presence of right-handed currents?

$$\mathcal{L} = \frac{G_F \cos \theta_C}{\sqrt{2}} \left((1 + \delta_{SM} + \epsilon_{LL}) j_L^{\mu} J_{L\mu} + \epsilon_{RL} j_L^{\mu} J_{R\mu} + \epsilon_{LR} j_R^{\mu} J_{L\mu} + \epsilon_{RR} j_R^{\mu} J_{R\mu} \right) + \text{h.c.}$$

$$j_{L,R}^{\mu} = \bar{e} \gamma^{\mu} (1 \mp \gamma_5) \nu, \ J_{L,R}^{\mu} = \bar{u} \gamma^{\mu} (1 \mp \gamma_5) d$$

contributions: d—

• take the one linear in exotic effective coupling ϵ_{XR} , calculate the observables and get the bound imposed by the collected experimental data

→ rate:
$$[T_{1/2}^{2\nu\beta\beta}]^{-1} = \epsilon_{XR}^2 G_{2\nu\beta\beta} |M_{2\nu\beta\beta}|^2$$

Electron Energy Distribution

2νββ decay (both the SM and the exotic RHC-induced contributions)
 distribution in total kinetic (left) and single electron kinetic (right) energy

Electron Angular Correlation

• observed angular correlation: mixture of the SM and exotic contributions – as a function of ϵ_{XR} interpolates between the SM ($\epsilon_{XR}=0$) and exotic ($\epsilon_{XR}>>1$) cases

Bound on ϵ_{xR} Coupling

- angular distribution: $\frac{\mathrm{d}\Gamma^{2\nu}}{\mathrm{d}\cos\theta} = \frac{\Gamma^{2\nu}}{2} \left(1 + K^{2\nu}\cos\theta\right)$ with correlation factor: $K^{2\nu} \approx K_{\mathrm{SM}}^{2\nu} + \alpha\,\epsilon_{XR}^2$
- forward-backward asymmetry: $A_{\theta}^{2\nu}=\frac{N_{\theta>\pi/2}-N_{\theta<\pi/2}}{N_{\theta>\pi/2}+N_{\theta<\pi/2}}=\frac{1}{2}K^{2\nu}$
- estimated accuracy of NEMO-3: $K_{\rm SM}^{2\nu}=-0.63\pm0.0027$
 - ightarrow bound on the effective coupling at 90% CL: $\epsilon_{XR}\lesssim 2.7 imes 10^{-2}$
- more stringent limit than the one obtained from the standard beta decay measurements
- SuperNEMO would further improve this bound
- rough estimates, dedicated experimental analysis necessary

Exotic 2νββ – Sterile Neutrino

Exotic 2νββ – Sterile Neutrino

Summary & Outlook

- A variety of different mechanisms may contribute to 0vbb and there are several possibilities how to distinguish among them; however, pinpointing the dominant contribution is not an easy task: measurements of energy spectra, angular correlation and usage of multiple isotopes necessary + LQCD input essential. The corresponding analysis to be published soon.
- Combining various contributions → involved, tedious calculations
 → 0νββ Automation Tool on the way → simple comparison of different
 mechanisms mainly, calculation of corresponding limits and
 production of relevant plots. Anything else?
- Observation of $0\nu\beta\beta$ decay is the primary goal of double beta decay searches no signal, yet, but we do see $2\nu\beta\beta$ decay, which can also probe New Physics!
 - → Right-handed currents, sterile neutrinos, v self-interactions...more?